SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.

نویسندگان

  • M S Swanson
  • E A Malone
  • F Winston
چکیده

Mutations in the SPT5 gene of Saccharomyces cerevisiae were isolated previously as suppressors of delta insertion mutations at HIS4 and LYS2. In this study we have shown that spt5 mutations suppress the his4-912 delta and lys2-128 delta alleles by altering transcription. We cloned the SPT5 gene and found that either an increase or a decrease in the copy number of the wild-type SPT5 gene caused an Spt- phenotype. Construction and analysis of an spt5 null mutation demonstrated that SPT5 is essential for growth, suggesting that SPT5 may be required for normal transcription of a large number of genes. The SPT5 DNA sequence was determined; it predicted a 116-kDa protein with an extremely acidic amino terminus and a novel six-amino-acid repeat at the carboxy terminus (consensus = S-T/A-W-G-G-A/Q). By indirect immunofluorescence microscopy we showed that a bifunctional SPT5-beta-galactosidase protein was located in the yeast nucleus. This molecular analysis of the SPT5 gene revealed a number of interesting similarities to the previously characterized SPT6 gene of S. cerevisiae. These results suggest that SPT5 and SPT6 act in a related fashion to influence essential transcriptional processes in S. cerevisiae.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae.

Genetic and biochemical studies have identified many factors thought to be important for transcription elongation. We investigated relationships between three classes of these factors: (1) transcription elongation factors Spt4-Spt5, TFIIS, and Spt16; (2) the C-terminal heptapeptide repeat domain (CTD) of RNA polymerase II; and (3) protein kinases that phosphorylate the CTD and a phosphatase tha...

متن کامل

Functional domains of the simian foamy virus type 1 transcriptional transactivator (Taf).

The genome of simian foamy virus type 1 encodes a transcriptional transactivator (Taf) that dramatically elevates gene expression directed by the viral long terminal repeat. In this report, we describe the functional domains of simian foamy virus type 1 Taf. Several taf mutants and fusion proteins of Taf and the DNA-binding domain of the Saccharomyces cerevisiae transcriptional transactivator G...

متن کامل

The carboxy-terminal portion of the aflatoxin pathway regulatory protein AFLR of Aspergillus parasiticus activates GAL1::lacZ gene expression in Saccharomyces cerevisiae.

AFLR, a DNA-binding protein of 444 amino acids, transactivates the expression of aflatoxin biosynthesis genes in Aspergillus parasiticus and Aspergillus flavus, as well as the sterigmatocystin synthesis genes in Aspergillus nidulans. We show here by fusion of various aflR coding regions to the GAL4 DNA-binding coding region that the AFLR carboxyl terminus contained a region that activated GAL1:...

متن کامل

Cloning, expression, and function of TFC5, the gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor TFIIIB.

TFC5, the unique and essential gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor (TF)IIIB has been cloned. It encodes a 594-amino acid protein (67,688 Da). Escherichia coli-produced B" has been used to reconstitute entirely recombinant TFIIIB that is fully functional for TFIIIC-directed, as well as TATA box-dependent, DNA binding and transcri...

متن کامل

Isolation, Subtype Determination, Cloning and Expression of HBsAg Gene from an Iranian Carrier in Saccharomyces cerevisiae

The Hepatitis B Surface antigen ( HBsAg) gene was isolated from an Iranian HBeAg positive carrier by PCR. The gene was cloned in pUC19 for sequencing and pYES2 for expression in Saccharomyces cerevisiae, which pNF1 and pDF3 constructs were made respectively. The sequencing data showed that the isolated HBsAg gene shared more than 90% homology with the ayw subtype. The pDF3 was transferred into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 11 8  شماره 

صفحات  -

تاریخ انتشار 1991